

Westinghouse Non-Proprietary Class

© 2013 Westinghouse Electric Company LLC. All Rights Reserv

Outline

- Historical overview Westinghouse LOCA Safety Analysis Methodologies
- Industry and regulatory drivers for improved realistic (Best-Estimate) safety analysis methods
- Introduction to the Westinghouse Full Spectrum LOCA Evaluation Model:
 - Functional requirements
 - Major code models improvements and assessment
 - Approach to the uncertainties
- Conclusions

Current (Licensed) Westinghouse LOCA Technology

Large Break LOCA

- $\bullet \ \, \text{Best-Estimate Methods Based on } \underline{W} \text{COBRA/TRAC (PD2)}$
 - ASTRUM (2004), CQD (1996)
 - -Valid from 1 ft 2 (0.093 m 2) to DEG (2 * 4.12 ft 2 (0.383 m 2))

Small Break LOCA

- Appendix K Methods Based on NOTRUMP (1985)
 - Typical applications to 8 in (52 cm) only (0.35 ft² (0.033 m²))

Intermediate Break LOCA

• Not Analyzed, Historically Considered Non-Limiting

WCOBRA/TRAC Development History

	W V TTW TO BOVOIODITIONS THOSE TY
Year	Development Activity
1983	Obtained COBRA/TRAC (NUREG/CR-3046) for UPI plant appl.
1988	SER on SECY-UPI method (Interim BE method/SECY-83-472)
1988	RG 1.157 "Best Estimate Calculation of ECCS Performance"
1989	CSAU (NUREG/CR-5249)
→1993	Improvements and Error corrections to COBRA/TRAC and Development of WCOBRA/TRAC through > 100 SET/IET test simulations
1993	Submittal of Code Qualification Documents (CQD) to USNRC
1996	SER by USNRC for the BELOCA methodology (1996 CQD Method)
1998	SER for DVI Plant (AP600)
1999	SER for UPI-BELOCA
2004	AP1000® ⁽ⁱ⁾ , SER for ASTRUM
2005-2010	Development of WCOBRA/TRAC-TF2 and Full Spectrum LOCATM Methodology and submittal to the US NRC for review and approval

in the United States of America and may be registered in other countries throughout the world. All rights reserved. Unauthorized

FULL SPECTRUM LOCA

History of Westinghouse Best Estimate LOCA Methodology

- Licensed 1st NRC-Approved Best-Estimate Large Break LOCA (BELOCA) Methodology in 1996 (CQD)
- Licensed an Automated Statistical Treatment of Uncertainty Method (ASTRUM, 2004)
- Application of ASTRUM in 6 countries in addition to US, (Sweden, Belgium, Spain, Taiwan, Brazil, China)
- The Full Spectrum LOCA Methodology now extends applicability to any LOCA: Large, Intermediate and Small Break scenarios:
 - Full Spectrum LOCA Evaluation Model

FULL SPECTRUM LOCA

Objectives for Full Spectrum LOCA

- Development roadmap consistent with recent Regulatory Guide (RG 1.203): Evaluation Model Development and Assessment Process (EMDAP)
 - Develop assessment strategy for all high and medium ranked PIRT processes across the break spectrum (SB, IB, LB)
 - -Improve or range models as needed based on assessment results
 - -Rely on an improved statistical treatment of the uncertainties.

Small and Intermediate Breaks Eliminated as a Design Constraint

Full Spectrum LOCA PIRT Scenario Identification and Partition LOCA Scenario: . The break size considered includes any break size such that break flow is beyond the capacity of the normal charging pumps up to and including a double ended guillotine rupture with a break flow area two times the pipe A Full Spectrum LOCA Integrated PIRT was developed Significant Improvement to WCOBRA/TRAC, in particular to handle smaller break LOCA scenarios New code version renamed WCOBRA/TRAC-TF2 FULL SPECTRUM LOCA Westinghouse Code Development Overview Coupling with TRAC-PF1(which now replaces TRAC-PD2) Addition of Non-Condensable Transport Capability in the 3D Module of WCOBRA/TRAC-TF2 • Upgrades to several models in both 1D and 3D modules. Improvements include: - A new horizontal flow regimes map - Safety injection condensation and non-condensable condensation suppression models - Enhancement to the core heat transfer package FULL SPECTRUM LOCA Westinghouse Code Assessment Approach • WCOBRA/TRAC was originally subjected to an extensive assessment against Large Break LOCA phenomena: - More than 100 experiments originally used to validate against key WCOBRA/TRAC-TF2 is assessed against the same test matrix for the Large Break LOCA scenario/phenomena to confirm Assessment matrix now augmented with several SETs and IETs to cover SB and IB LOCA and scenario/phenomena • The assessment also includes modeling of standard numerical problems and analytical benchmarks which are available in the literature FULL SPECTRUM LOCA Westinghouse

Small Break LOCA SETs

Small Break Process	Test	Comments	
Break Flow	EPRI-NP-4556 +additional Marviken Dataset represents more than 3500 points from 40 geom., and 10 facilities, containing data: 13 < P < 2500 psia (172.4 bar) 0 < L < 90.55 in (2300 mm), 0.018 in (0.464 mm) < D < 19.7 in (500 mm).	Available data appears to span PWR ranges of conditions for break area, upstream subcooling, flow quality. (V. Ilic, S. Banerjee and S. Behling, "A Qualified Database for the Critical Flow of Water", EPRI-NP-4556, May, 1986.)	
Mixture Level	ORNL, Westinghouse G-1 Loop, GE Blowdown	Data covers PWR expected range of pressure and bundle power.	
Horizontal Flow Regimes	JAERI-TPTF Tests	Horizontal stratified regime transitions predicted according to Modified Taitel-Dukler map.	
Loop Seal Clearance	UPTF Loop Seal Tests	Data covers full scale geometry, provides information for range of Jg that covers PWRs.	

FULL SPECTRUM LOCA

Wastinghouse Non-Proprieton/Class 3

© 2013 Westinghouse Electric Company LLC. All Rights Reserved.

Small Break LOCA - SETs

Small Break Process	Test	Comments
Fuel Rod Models: Nuclear Rod Models Heat Transfer	Various sets of test data from LBLOCA assessment ORNL INEL Post-CHF Data	Fuel rod models were assessed and quantified for large break. Data representative of SBLOCA conditions added.
Steam Generator Hydraulics	ROSA NC	Prediction of flooding in SG tubes at PWR range of conditions.
Pump Performance	Pump Specific Data from LBLOCA	Empirical pump data; assessed for large break LOCA.
SI Condensation	COSI Tests, UPTF8, ROSA SB-CL-05	High pressure and Low Pressure SI condensation.

FULL SPECTRUM LOCA

Westinghouse Non-Proprietary Class 3

© 2013 Westinghouse Electric Company LLC. All Rights Reserved

Small Break LOCA - IETs

Small Break Process	Test	Comments
Break Flow, entrainment at Break – Off Take	LOFT L3 Series ROSA: 10% CL (side), 5% CL (side), 2.5% CL (side), 2.5% CL (top), 2.5% CL (bottom), 0.5% CL (side)	Single and two-phase critical break flow measurements available. Orientation effect.
Mixture Level	ROSA: 10% CL, 5% CL, 2.5% CL, and 0.5% CL, Semiscale 7-10D	Range of break sizes. Vessel inventories and system wide mass distributions.
Steam Generator Hydraulics	ROSA NC LOFT L3 series	Provides information on system wide phase separation, primary-secondary heat transfer.
Loop Seal Clearance	ROSA: 10% CL, 5% CL, 2.5% CL, 0.5% CL, and additional 5% CL with higher Core Bypass	Provides information on Loop Seal Clearance phenomena.
Fuel Rod Models	LOFT (4 tests), ROSA SB-CLs	Nuclear rods. Clad heatup & PCTs.
IBLOCAs	LOFT L5-1/L8-2	A 14 in (356 mm) ACC line Break

FULL SPECTRUM LOCA

WCOBRA/TRAC-TF2 – Sample Results from IETs Assessment – Natural Circulation

FULL SPECTRUM LOCA

Westinghouse

WCOBRA/TRAC-TF2 — Sample Results from IETs Assessment — SB-CL-18

WCOBRA/TRAC-TF2 – Sample Results from IETs – LOFT L5-1: Intermediate Break

© 2013 Westinghouse Electric Company LLC. All Rights Reserve

Treatment of Uncertainties

- Uncertainty methodology is based on a direct Monte Carlo sampling of the uncertainty contributors similar to previously approved method (ASTRUM), however implementation details have been re-worked to:
 - Properly address concerns relative to the sample size and variability of 95/95 estimator
 - Need of providing an adequate coverage and consideration of all break sizes which are considered by the Full Spectrum LOCA EM.

Westinghouse Non-Proprietary Class

© 2013 Westinghouse Electric Company LLC. All Rights Reserve

Summary

- Westinghouse Full Spectrum LOCA Methodology was submitted to the US NRC on November 2010 for its review and approval.
- Licensing expectation: Realistic methods are in line with current regulatory practice and expectations (risk-informed regulatory environment) both in the US and abroad.
- Full Spectrum LOCA EM is expected to be aligned with such expectations

